Image from Google Jackets

Data Analytics Principles Tools & Practices

By: By: Material type: TextTextLanguage: English Publication details: New Delhi : Bpb Publications, 2022Description: 398ISBN:
  • 9789388511957
Subject(s): DDC classification:
  • 005.74 ARO
Summary: The book "Data Analytics: Principles, Tools, and Practices" can be considered a handbook or a guide for professionals who want to start their journey in the field of data science. The journey starts with the introduction of DBMS, RDBMS, NoSQL, and DocumentDB. The book introduces the essentials of data science and the modern ecosystem, including the important steps such as data ingestion, data munging, and visualization. The book covers the different types of analysis, different Hadoop ecosystem tools like Apache Spark, Apache Hive, R, MapReduce, and NoSQL Database. It also includes the different machine learning techniques that are useful for data analytics and how to visualize data with different graphs and charts. The book discusses useful tools and approaches for data analytics, supported by concrete code examples. After reading this book, you will be motivated to explore real data analytics and make use of the acquired knowledge on databases, BI/DW, data visualization, Big Data tools, and statistical science
List(s) this item appears in: New Arrivals for the Month of March 2023 - Computer Science and Data Science | New Arrivals for the Month of August - 2023
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

The book "Data Analytics: Principles, Tools, and Practices" can be considered a handbook or a guide for professionals who want to start their journey in the field of data science. The journey starts with the introduction of DBMS, RDBMS, NoSQL, and DocumentDB. The book introduces the essentials of data science and the modern ecosystem, including the important steps such as data ingestion, data munging, and visualization. The book covers the different types of analysis, different Hadoop ecosystem tools like Apache Spark, Apache Hive, R, MapReduce, and NoSQL Database. It also includes the different machine learning techniques that are useful for data analytics and how to visualize data with different graphs and charts. The book discusses useful tools and approaches for data analytics, supported by concrete code examples. After reading this book, you will be motivated to explore real data analytics and make use of the acquired knowledge on databases, BI/DW, data visualization, Big Data tools, and statistical science

There are no comments on this title.

to post a comment.