Image from Google Jackets

Machine Learning: Master Supervised & Unsupervised Learning Algorithms With Real Examples

By: By: Material type: TextTextLanguage: English Publication details: New Delhi : Bpb Publications, 2022Description: 270ISBN:
  • 9789391392352
Subject(s): DDC classification:
  • 006.31 DOS
Summary: The book offers the readers the fundamental concepts of Machine Learning techniques in a user-friendly language. The book aims to give in-depth knowledge of the different Machine Learning (ML) algorithms and the practical implementation of the various ML approaches. This book covers different Supervised Machine Learning algorithms such as Linear Regression Model, Naïve Bayes classifier Decision Tree, K-nearest neighbor, Logistic Regression, Support Vector Machine, Random forest algorithms, Unsupervised Machine Learning algorithms such as k-means clustering, Hierarchical Clustering, Probabilistic clustering, Association rule mining, Apriori Algorithm, f-p growth algorithm, Gaussian mixture model and Reinforcement Learning algorithm such as Markov Decision Process (MDP), Bellman equations, policy evaluation using Monte Carlo, Policy iteration and Value iteration, Q-Learning, State-Action-Reward-State-Action (SARSA). It also includes various feature extraction and feature selection techniques, the Recommender System, and a brief overview of Deep Learning.By the end of this book, the reader can understand Machine Learning concepts and easily implement various ML algorithms to real-world problems.
List(s) this item appears in: New Arrivals for the Month of March 2023 - Computer Science and Data Science | New Arrivals for the Month of September - 2023
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode Item holds
Book Book Alliance College of Engineering and Design CSE & IT 006.31 DOS (Browse shelf(Opens below)) Checked out 26/12/2024 E12184
Book Book Alliance School of Liberal Arts 006.31 DOS (Browse shelf(Opens below)) Checked out 20/12/2024 LA01301
Total holds: 0

The book offers the readers the fundamental concepts of Machine Learning techniques in a user-friendly language. The book aims to give in-depth knowledge of the different Machine Learning (ML) algorithms and the practical implementation of the various ML approaches. This book covers different Supervised Machine Learning algorithms such as Linear Regression Model, Naïve Bayes classifier Decision Tree, K-nearest neighbor, Logistic Regression, Support Vector Machine, Random forest algorithms, Unsupervised Machine Learning algorithms such as k-means clustering, Hierarchical Clustering, Probabilistic clustering, Association rule mining, Apriori Algorithm, f-p growth algorithm, Gaussian mixture model and Reinforcement Learning algorithm such as Markov Decision Process (MDP), Bellman equations, policy evaluation using Monte Carlo, Policy iteration and Value iteration, Q-Learning, State-Action-Reward-State-Action (SARSA). It also includes various feature extraction and feature selection techniques, the Recommender System, and a brief overview of Deep Learning.By the end of this book, the reader can understand Machine Learning concepts and easily implement various ML algorithms to real-world problems.

There are no comments on this title.

to post a comment.